COMPLETE PUBLICATIONS

Complete List Of Publications Of The Bradshaw-Holzapfel Lab

Genetic and genomic basis of blood-feeding in mosquitoes

Bradshaw, W. E., Fletcher, M. C., and Holzapfel, C. M. 2023. Clock‐talk: have we forgotten about geographic variation? J Comp Physiol A 2023 [pdf]

Borowczak, R. J., Wood, M. A., Bradshaw, W. E., and Holzapfel, C. M. Enhanced iteroparity and bet-hedging as correlated responses to direct selection on blood feeding in a mosquito. (Upcoming).

Heilig, M., Sturiale, S. L., Marzec, S., Holzapfel, C. M., Bradshaw, W.E., Meuti, M. E., and Armbruster, P. A. Messenger RNA but not MicroRNA expression profiles differ between biting and non-biting Aedes albopictus from a single population. (Upcoming).

Cooper, E.A., Noorai, R. E., Krishnan, K., Armbruster, P. A., Cohnstaedt, L., Holzapfel, C. M., and Bradshaw, W. E. The Wyeomyia smithii genome: Blood feeding, clock genes, and more (Upcoming).

Marzec, S., Siperstein, A., Zhou, A., Holzapfel, C. M., Bradshaw, W. E., Meuti, M. E., and Armbruster, P. A. 2023. MicroRNA expression prior to biting in a vector mosquito anticipates physiological processes related to energy utilization, reproduction and immunity. Insects 14:700 [pdf]

Bradshaw, W. E., Kizziar, P., Borowczak, R. J., Kirsch, E., and Holzapfel, C. M. 2022. Latent genetic effects of past selection on blood feeding: Why history matters. Insects 13:939 [pdf]

Siperstein, A., Marzec, S., Fritz, M. L., Holzapfel, C. M., Bradshaw, W. E., Armbruster, P. A., and Meuti, M. Conserved molecular pathways underlying biting in two divergent mosquito genera Evol Appl 15:878-890 [pdf].

Bradshaw, W. E., Burkhart, J., Colbourne, J. K., Borowczak, R., Lopez, J., Denlinger, D. L., Reynolds, J. A., Pfrender, M. E., and Holzapfel, C. M. 2017. Evolutionary transition from blood feeding to obligate nonbiting in a mosquito. Proc Natl Acad Sci USA www.pnas.org/cg/doi/10.1073/pnas.1717502115 [pdf]; Commentary: Arbmruster, P. A. 2017. Molecular Pathways to Nonbiting Mosquitoes www.pnas.org/cgi/doi/10.1073/pnas.172120911 [pdf]

Bradshaw, W. E. 1986. Variable iteroparity as a life-history tactic in the pitcher-plant mosquito Wyeomyia smithii. Evolution 40:471-478. [pdf]

Bradshaw, W. E. 1980. Blood feeding and capacity for increase in the pitcher-plant mosquito, Wyeomyia smithii. Environ. Entomol. 9:86-89. [pdf]

Genetic and physiological basis of biological timing

Bradshaw, W. E., Fletcher, M. C., and Holzapfel, C. M. 2023. Clock‐talk: have we forgotten about geographic variation? J Comp Physiol A 2023 [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2017. Natural variation and genetics of the photoperiodic timer in Wyeomyia smithii. Adv. Genet. 99:39-71 [pdf]

Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M., and Bradshaw, W. E. 2017. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation? Phil. Trans. R. Soc. Lond. B 372:20160257. [pdf]

Tormey, D., Colbourne, J. K., Mockaitis, K., Choi, J.-H., Lopez, J., Burkhart, J., Bradshaw, W., and Holzapfel, C. M. 2015. Relative rate of circadian clock gene evolution between the sabethine mosquito Wyeomyia smithii and six other insect taxa does not differ between core feedback-loop genes and their post-translational modifiers. BMC Genomics 16:754. [pdf]

Merz, C., Catchen, J. M., Hanson-Smith, V., Emerson, K. J., Bradshaw, W. E., and Holzapfel, C. M. 2013. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America. PLoS ONE 8:e72262. [pdf]

Bradshaw, W. E., Emerson, K. J., and Holzapfel, C. M. 2012. Genetic correlations and the evolution of photoperiodic time measurement within a local population of the pitcher-plant mosquito, Wyeomyia smithii. Heredity 108:473-479. [pdf]

Bradshaw, W. E., Emerson, K. J., Catchen, J. M., Cresko, W. A., and Holzapfel, C. M. 2012. Footprints in time: comparative quantitative trait loci mapping of the pitcher-plant mosquito, Wyeomyia smithii. Proc. R. Soc. B 279:4551-4558. [pdf]

O’Brien, C. S., Bourdo, R., Bradshaw, W. E., Holzapfel, C. M., and Cresko, W. A. 2012. Conservation of the photoperiodic neuroendocrine axis among vertebrates: Evidence from the teleost fish, Gasterosteus aculeatus. Gen. Comp. Endocrinol. 178:19-27. [pdf]

O’Brien, C., Bradshaw, W. E., and Holzapfel, C. M. 2011. Testing for causality in covarying traits: genes and latitude in a molecular world. Mol. Ecol. 20:2471-2476. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2010. What Season is it anyway? circadian tracking vs. photoperiodic anticipation in insects. J. Biol. Rhythms 25:155-165. [pdf]

Emerson, K.J., Merz, C.R., Catchen, J. M., Hohenlohe, P. A., Cresko, W. A., Bradshaw, W. E., and Holzapfel, C. M. 2010. Resolving postglacial phylogeography using high-throughput sequencing. PNAS 107:16196-16200. [pdf]

Emerson, K.J., Bradshaw, W.E., and Holzapfel, C.M. 2010. Microarrays reveal early transcriptional events during the termination of larval diapause in natural populations of the mosquito, Wyeomyia smithii. PLoS ONE 5:e9574. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2010. Circadian clock genes, ovarian development and diapause. BMC Biology 8:115. [pdf]

Emerson, K.J., Letaw, A.D., Bradshaw, W.E., and Holzapfel, C.M. 2008. Extrinsic light:dark cycles, rather than endogenous circadian cycles, affect the photoperiodic counter in the pitcher-plant mosquito, Wyeomyia smithii. J. Comp. Physiology A 194:611 – 615. [pdf]

Emerson, K.J., Bradshaw, W.E., and Holzapfel, C.M. 2009. Complications of Complexity: Integrating environmental, genetic and hormonal control of insect diapause. Trends Genetics 25:217-225. [pdf]

Emerson, K.J., Dake, S.J., Bradshaw, W.E., and Holzapfel, C.M. 2009. Evolution of photoperiodic time measurement is independent of the circadian clock in the pitcher-plant mosquito, Wyeomyia smithii. J. Comp. Physiology A 195:385 – 391. [pdf]

Bradshaw, W.E. and Holzapfel, C.M. 2007. Tantalizing timeless. Science 316:1851-1852. [pdf]

Mathias, D.M., Jacky, L., Bradshaw, W.E., and Holzapfel, C.M. 2007. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176:391 – 402. [pdf]

Bradshaw, W.E., Haggerty B.P., and Holzapfel, C.M. 2005. Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 169:485-488. [pdf]

Bradshaw, W.E., Holzapfel, C.M., and Mathias, D. 2006. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: Can the seasonal timer evolve independently of the circadian clock? Am. Nat. 167: 601 – 605. [pdf]

Mathias, D., Reed, L.K., Bradshaw, W.E., and Holzapfel, C.M. 2006. Evolutionary divergence of circadian and photoperiodic phenotypes in the pitcher-plant mosquito, Wyeomyia smithii. J. Biol. Rhythms 21: 132 – 139. [pdf]

Bradshaw, W. E., Quebodeaux, M. C., and Holzapfel, C. M. 2003. The contribution of an hourglass timer to the evolution of photoperiodic response in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 57(10):2342-2349. [pdf]

Mathias, D.A., Jacky, L., Bradshaw, W.E., and Holzapfel, C.M. 2005. Geographic and developmental variation in expression of the circadian rhythm gene, timeless, in the pitcher-plant mosquito, Wyeomyia smithii. J. Insect Physiol. 51:661 – 667. [pdf]

Bradshaw, W.E., Quebodeaux, M.C., and Holzapfel, C.M. 2003. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: Adaptive response to the seasonal environment or correlated response to climatic adaptation? Am. Nat. 161:735-748. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2001. Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement. J. Insect Physiol. 47:809-820. [pdf]

Bradshaw, W. E., Holzapfel, C. M., and Davison, T. E. 1998. Hourglass and rhythmic components of photoperiodic time measurement in the pitcher plant mosquito, Wyeomyia smithii. Oecologia 117:486-495. [pdf]

Lair, K. P., Bradshaw, W. E., and Holzapfel, C. M. 1997. Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 147:1873-1883. [pdf]

Wegis, M. C., Bradshaw, W. E., Davison, T. E., and Holzapfel, C. M. 1997. Rhythmic components of photoperiodic time measurement in the pitcher-plant mosquito, Wyeomyia smithii. Oecologia 110:32-39. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2000. The evolution of genetic architectures and the divergence of natural populations. Pp. 245-263 in J. B. Wolf, E. D. Brodie, and M. Wade, Eds. Epistasis and the Evolutionary Process. Oxford University Press. [pdf]

Hard, J. J., Bradshaw, W. E., and Holzapfel, C. M. 1993. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat. 142:457-473. [pdf]

Campbell, M. D., and Bradshaw, W. E. 1992. Genetic coordination of diapause in the pitcherplant mosquito, Wyeomyia smithii. Ann. Entomol. Soc. Amer. 85:445-451. [pdf]

Hard, J. J., Bradshaw, W. E., and Holzapfel, C. M. 1992. Epistasis and the genetic divergence of photoperiodism between populations of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 131:389-396. [pdf]

Bradshaw, W. E., and Phillips, D. L. 1980. Photoperiodism and the photic environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia 44:311-316. [pdf]

Bradshaw, W. E. 1972. Action spectra for photoperiodic response in a diapausing mosquito. Science 175:1361-1362. [pdf]

Bradshaw, W. E. 1970. Interaction of food and photoperiod in the termination of larval diapause in Chaoborus americanus (Diptera: Culicidae). Biol. Bull. 139:476-484. [pdf]

Genetic and physiological response to rapid climate change

Bradshaw, W. E., and Holzapfel, C. M. 2010. Light, time, and the physiology of biotic response to rapid climate change in animals. Annu. Rev. Physiol. 72:147-166. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2010. Insects at not so low temperatures: climate change in the temperate zone and its biotic consequences. Pp 242-275 in Denlinger, D. L., and R. E. Lee, eds. Low Temperature Biology of Insects. Cambridge University Press. [pdf]

Bradshaw, W.E., and Holzapfel, C.M. 2008. Genetic response to rapid climate change: it’s seasonal timing that matters. Mol. Ecol. 17:157 – 166. [pdf]

Bradshaw, W.E. and Holzapfel, C.M. 2006. Climate change – Evolutionary response to rapid climate change. Science 312:1477 – 1478. [pdf]

Bradshaw, W.E., Zani, P.A., and Holzapfel, C.M 2004. Adaptation to temperate climates. Evolution 58(8):1748 – 1762. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2001. Genetic shift in photoperiodic response correlated with global warming. Proc. Nat. Acad Sci. USA. 98:14509-14511. [pdf]

Armbruster, P., Bradshaw, W. E., Steiner, A. L., and Holzapfel, C. M. 1999. Evolutionary response to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83:509-519. [pdf]

Photoperiodism and seasonal development

Bradshaw, W. E., Fletcher, M. C., and Holzapfel, C. M. 2023. Clock‐talk: have we forgotten about geographic variation? J Comp Physiol A 2023 [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2017. Natural Variation and genetics of the photoperiodic timer in Wyeomyia smithii. Adv. Genet. 99:39-71. [pdf]

Denlinger, D. L., Hahn, D. A., Merlin, C., Holzapfel, C. M., and Bradshaw, W. E. 2017. Keeping time without a spine: what can the insect clock teach us about seasonal adaptation? Phil. Trans. R. Soc. Lond. B 372:20160257. [pdf]

O’Brien, C., Unruh, L., Zimmerman, C., Bradshaw, W. E., Holzapfel, C. M., and Cresko, W. A. 2013. Geography of the circadian gene clock and photoperiodic response in western North American populations of the three-spined stickleback Gasterosteus aculeatus. J. Fish Biol. 82:827-839. [pdf]

Emerson, K.J., Uyemura, A.M., McDaniel, K.L., Schmidt P.S., Bradshaw, W.E., and Holzapfel, C.M. 2009. Environmental control of ovarian dormancy in natural populations of Drosophila melanogaster. J. Comp. Physiol. A 195:825 – 829. [pdf]

Yeates-Burghart, Q.S., O’Brien, C., Cresko, W.A., Holzapfel, C.M., and Bradshaw, W.E. 2009. Latitudinal variation in photoperiodic response of the three-spined stickleback Gasterosteus aculeatus in western North America. J. Fish Biol 75:2075 – 2081. [pdf]

Emerson, K.J., Bradshaw, W.E., and Holzapfel, C.M. 2008. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62:979 – 983. [pdf]

Bradshaw, W.E., and Holzapfel, C.M. 2007. Evolution of animal photoperiodism. Annu. Rev. Ecology, Evol. Syst. 38:1 – 25. [pdf]

Mathias, D.M., Jacky, L., Bradshaw, W.E., and Holzapfel, C.M. 2007. Quantitative trait loci associated with photoperiodic response and stage of diapause in the pitcher-plant mosquito, Wyeomyia smithii. Genetics 176:391 – 402. [pdf]

Bradshaw, W.E. and Holzapfel, C.M. 2006. Climate change – Evolutionary response to rapid climate change. Science 312: 1477 – 1478. [pdf]

Bradshaw, W.E., Haggerty B.P., and Holzapfel, C.M. 2005. Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 169:485-488. [pdf]

Bradshaw, W.E., Zani, P.A., and Holzapfel, C.M 2004. Adaptation to temperate climates. Evolution 58:1748 – 1762. [pdf]

Bradshaw, W. E., Quebodeaux, M. C., and Holzapfel, C. M. 2003. The contribution of an hourglass timer to the evolution of photoperiodic response in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 57:2342-2349. [pdf]

Bradshaw, W.E., Quebodeaux, M.C., and Holzapfel, C.M. 2003. Circadian rhythmicity and photoperiodism in the pitcher-plant mosquito: Adaptive response to the photic environment or correlated response to climatic adaptation? The American Naturalist 161:735-748. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2001. Genetic shift in photoperiodic response correlated with global warming. Proc. Nat. Acad. Sci. USA. 98:14509-14511. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2001. Phenotypic evolution and the genetic architecture underlying photoperiodic time measurement. J. Insect Physiol. 47:809-820. [pdf]

Bradshaw, W. E. 1993. Evolution in seasonal environments. Pp. 121-133 in M. Takeda and S. Tanaka, Eds. Seasonal Adaptation and Diapause in Insects. Bun-ichi Sôgô-Shuppan, Ltd., Tokyo. [English original; published in Japanese] [pdf]

Holzapfel, C. M., and Bradshaw, W. E. 1981. Geography of larval dormancy in the tree-hole mosquito, Aedes triseriatus (Say). Can. J. Zool. 59:1014-1021. [pdf]

Bradshaw, W. E. 1980. Thermoperiodism and the thermal environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia 46:13-17. [pdf]

Bradshaw, W. E., and Phillips, D. L. 1980. Photoperiodism and the photic environment of the pitcher-plant mosquito, Wyeomyia smithii. Oecologia 44:311-316. [pdf]

Jordan, R. G. 1980. Geographic differentiation in the development of Aedes sierrensis (Diptera:Culicidae) in nature. Can. Entomol. 112:205-210. [pdf]

Jordan, R. G. 1980. Embryonic diapause in three populations of the western tree hole mosquito, Aedes sierrensis. Ann. Entomol. Soc. Amer. 73:357-359. [pdf]

Jordan, R. G., and Bradshaw, W. E. 1978. Geographic variation in the photoperiodic response of the western tree-hole mosquito, Aedes sierrensis. Ann. Entomol. Soc. Amer. 71:487-490. [pdf]

Bradshaw, W. E., and Lounibos, L. P. 1977. Evolution of dormancy and its photoperiodic control in pitcher-plant mosquitoes. Evolution 31:546-567. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1977. Interaction between photoperiod, temperature, and chilling in dormant larvae of the tree-hole mosquito, Toxorhynchites rutilus Coq. Biol. Bull. 152:147-158. [pdf]

Bradshaw, W. E. 1976. Geography of photoperiodic response in a diapausing mosquito. Nature 262:384-386. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1975. Biology of tree-hole mosquitoes: photoperiodic control of development in northern Toxorhynchites rutilus (Coq.). Can. J. Zool. 53:889-893. [pdf]

Lounibos, L. P., and Bradshaw, W. E. 1975. A second diapause in Wyeomyia smithii: seasonal incidence and maintenance by photoperiod. Can. J. Zool. 53:215-221. [pdf]

Bradshaw, W. E. 1974. Photoperiodic control of development in Chaoborus americanus with special reference to photoperiodic action spectra. Biol. Bull. 146:11-19. [pdf]

Bradshaw, W. E. 1974. Phenology and seasonality modeling in insects. Pp. 127-137 in H. Lieth, ed. Phenology and Seasonality Modeling. Springer-Verlag, New York. [pdf]

Bradshaw, W. E. 1973. Photoperiodism in Orthopodomyia signifera. Can. J. Zool. 51:355-357. [pdf]

Bradshaw, W. E. 1973. Homeostasis and polymorphism in vernal development of Chaoborus americanus. Ecology 54:1247-1259. [pdf]

Bradshaw, W. E. 1972. Action spectra for photoperiodic response in a diapausing mosquito. Science 175:1361-1362. [pdf]

Bradshaw, W. E., and Lounibos, L. P. 1972. Photoperiodic control of development in the pitcher-plant mosquito, Wyeomyia smithii. Can. J. Zool. 50:713-719. [pdf]

Bradshaw, W. E. 1972. Photoperiodic control in the initiation of diapause by Chaoborus americanus. Ann. Entomol. Soc. Amer. 65:755-756. [pdf]

Bradshaw, W. E. 1970. Interaction of food and photoperiod in the termination of larval diapause in Chaoborus americanus (Diptera: Culicidae). Biol. Bull. 136:476-484. [pdf]

Bradshaw, W. E. 1969. Major environmental factors inducing the termination of larval diapause in Chaoborus americanus Johannsen (Diptera: Culicidae). Biol. Bull. 136:2-8. [pdf]

Genetics and life-history evolution

Borowczak, R. J., Wood, M. A., Bradshaw, W. E., and Holzapfel, C. M. Enhanced iteroparity and bet-hedging as correlated responses to direct selection on blood feeding in a mosquito. (Upcoming).

Miller, T., Bradshaw, W. E., and Holzapfel, C. M. 2018. Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution. Ch. 24 in A. M. Ellison and L. Adamec, Eds. Carnivorous Plants: Physiology, Ecology, and Evolution. Oxford University Press, Oxford. [pdf]

Emerson, K.J., Bradshaw, W.E., and Holzapfel, C.M. 2008. Concordance of the circadian clock with the environment is necessary to maximize fitness in natural populations. Evolution 62:979 – 983. [pdf]

Bradshaw, W.E., Haggerty B.P., and Holzapfel, C.M. 2005. Epistasis underlying a fitness trait within a natural population of the pitcher-plant mosquito, Wyeomyia smithii. Genetics 169:485-488. [pdf]

Armbruster, P., Bradshaw, W. E., Ruegg, K., and Holzapfel, C. 2001. Geographic variation and the evolution of reproductive allocation in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 55:439-444. [pdf]

Armbruster, P., Bradshaw, W. E., Steiner, A. L., and Holzapfel, C. M. 1999. Evolutionary response to environmental stress by the pitcher-plant mosquito, Wyeomyia smithii. Heredity 83:509-519. [pdf]

Bradshaw, W. E., Armbruster, P. A., and Holzapfel, C. M. 1998. Fitness consequences of hibernal diapause in the pitcher-plant mosquito, Wyeomyia smithii. Ecology 79:1458-1462. [pdf]

Pfrender, M., Bradshaw, W. E., and Kleckner, C. A. 1998. Patterns in the geographical range sizes of ectotherms in North America. Oecologia 115:439-444. [pdf]

Armbruster, P., Bradshaw, W. E., and Holzapfel, C. M. 1997. Evolution of the genetic architecture underlying fitness in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 51:451-458. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1996. Genetic constraints to life-history evolution in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 50:1176-1181. [pdf]

Bradshaw, W. E., Holzapfel, C. M., and O’Neill, T. 1993. Egg size and reproductive allocation in the pitcher-plant mosquito, Wyeomyia smithii. J. Med. Entomol. 30:384-390. [pdf]

Hard, J. J., Bradshaw, W. E., and Holzapfel, C. M. 1993. Genetic coordination of demography and phenology in the pitcher-plant mosquito, Wyeomyia smithii. J. Evol. Biol. 6:707-723. [pdf]

Hard, J. J., and Bradshaw, W. E. 1993. Reproductive allocation in the western tree-hole mosquito, Aedes sierrensis. Oikos 66:55-65. [pdf]

Bradshaw, W. E. 1990. Present and future insect life-cycle evolution. Pp. 243-251 in F. Gilbert, ed., Insect Life Cycles: Genetics, Evolution, and Coordination. Springer-Verlag, London. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1990. Evolution of phenology and demography in the pitcher-plant mosquito, Wyeomyia smithii. Pp. 47-67 in F. Gilbert, ed. Insect Life Cycles: Genetics, Evolution, and Coordination. Spring-Verlag, London. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1989. Life-historical consequences of density-dependent selection in the pitcher-plant mosquito, Wyeomyia smithii. Am. Nat.133:869-887. [pdf]

Bradshaw, W. E., 1986. Geography of density-dependent selection in pitcher-plant mosquitoes. Pp. 48-65 in F. Taylor and R. Karban, eds. The Evolution of Insect Life Cycles. Springer-Verlag, New York. [pdf]

Bradshaw, W. E. 1986. Pervasive themes in insect life-cycle strategies. Pp. 261-275 in F. Taylor and R. Karban, eds. The Evolution of Insect Life Cycles. Springer-Verlag, New York. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1983. Life-cycle strategies in Wyeomyia smithii: Seasonal and geographic adaptations. Pp. 167-185 in Brown, V. K., and I. Hodek, eds. Diapause and Life Cycle Strategies in Insects. Dr. W. Junk, The Hague. [pdf]

Bradshaw, W. E. 1980. Blood feeding and capacity for increase in the pitcher-plant mosquito,Wyeomyia smithii. Environ. Entomol. 9:86-89. [pdf]

Protandry and male fitness

Holzapfel, C. M., and Bradshaw, W. E. 2002. Protandry: the relationship between emergence time and male fitness in the pitcher-plant mosquito, Wyeomyia smithii. Ecology 83:607-611. [pdf]

Bradshaw, W. E., Holzapfel, C. M., Kleckner, C. A., and Hard, J. J. 1997. Heritability of development time and protandry in the pitcher-plant mosquito, Wyeomyia smithii. Ecology 78:969-976. [pdf]

Kleckner, C., Hawley, W. A., Bradshaw, W. E., Holzapfel, C. M., and Fisher, I. J. 1995. Protandry in Aedes sierrensis: The significance of temporal variation in female fecundity. Ecology 76:1242-1250. [pdf]

Benjamin, S. N., and Bradshaw, W. E. 1994. Effects of body size and flight activity on malereproductive success in the pitcher-plant mosquito, Wyeomyia smithii (Diptera: Culicidae). Ann. Entomol. Soc. Am. 87:331-336. [pdf]

Benjamin, S. N., and Bradshaw, W. E. 1993. Male reproductive success in Wyeomyia smithii (Diptera: Culicidae). Ann. Entomol. Soc. Am. 86:594-598. [pdf]

Population biology

Borowczak, R. J., Wood, M. A., Bradshaw, W. E., and Holzapfel, C. M. Enhanced iteroparity and bet-hedging as correlated responses to direct selection on blood feeding in a mosquito. (Upcoming).

Miller, T.E., Bradshaw, W. E., and Holzapfel, C. M. 2018. Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution. Ch. 24 in A. M. Ellison and L. Adamec, eds. Carnivorous Plants: Physiology, ecology, and evolution. Oxford University Press, Oxford. [pdf]

Merz, C., Catchen, J.M., Hanson-Smith, V., Emerson, K.J., Bradshaw, W. E., and Holzapfel, C.M. 2013. Replicate phylogenies and post-glacial range expansion of the pitcher-plant mosquito, Wyeomyia smithii, in North America. PLoS ONE 8:e72262. [pdf]

Emerson, K.J., Merz, C.R., Catchen, J. M., Hohenlohe, P. A., Cresko, W. A., Bradshaw, W. E., and Holzapfel, C. M. 2010. Resolving postglacial phylogeography using high-throughput sequencing. Proc. Natl. Acad. Sci. USA 107:16196-16200. [pdf]

Franks, S.J., Avise, J.C., Bradshaw, W.E., Conner J.K., Etterson, J.R., Mazer, S.J., Shaw, R.G., Weis, A.E. 2008. The Resurrection Initiative: Storing ancestral genotypes to capture evolution in action. BioScience 58:870-873. [pdf]

Bergland, A.O., Agotsch, M, Mathias, D., Bradshaw, W.E., and Holzapfel, C. 2005. Factors influencing the seasonal life history of the pitcher-plant mosquito, Wyeomyia smithii. Ecol Entomol 30:129 – 137. [pdf]

Zani, P.A., Swanson, S.E.T., Corbin D., Cohnstaedt, L.W., Agotsch, M.D., Bradshaw, W.E., and Holzapfel, C.M. 2005. Geographic variation in tolerance of transient thermal stress in the mosquito, Wyeomyia smithii. Ecology 86:1206 – 1211. [pdf]

Zani, P.A., Cohnstaedt, L.W., Corbin, D., Bradshaw, W.E., and Holzapfel, C. 2005. Reproductive value in a complex life cycle: heat tolerance of the pitcher-plant mosquito, Wyeomyia smithii. J Evol Biol. 18:101 – 105.[pdf]

Bradshaw, W.E., Zani, P.A., and Holzapfel, C.M 2004. Adaptation to temperate climates. Evolution 58:1748 – 1762. [pdf]

Bradshaw, W. E., Fujiyama, S., and Holzapfel, C. M. 2000. Adaptation to the thermal climate of North America by the pitcher-plant mosquito, Wyeomyia smithii. Ecology 81:1262-1272. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 2000. The evolution of genetic architectures and the divergence of natural populations. Pp. 245-263 in J. Wolf, E. D. Brodie, and M. Wade, Eds. Epistasis and the Evolutionary Process. Oxford University Press. [pdf]

Maciá, A., and Bradshaw, W. E. 2000. Seasonal availability of resources and habitat degradation for the western tree-hole mosquito, Aedes sierrensis. Oecologia 125:55-65. [pdf]

Armbruster, P. A., Bradshaw, W. E., and Holzapfel, C. M. 1998. Effects of postglacial range expansion on allozyme and quantitative genetic variation in the pitcher-plant mosquito, Wyeomyia smithii. Evolution 52:1697-1704. [pdf]

Broberg, L., and Bradshaw, W. E. 1995. Density-dependent development in Wyeomyia smithii (Diptera: Culicidae): Intraspecific competition is not the result of interference. Ann. Entomol. Soc. Am. 88:465-470. [pdf]

Bradshaw, W. E., and Johnson, K. 1995. Initiation of metamorphosis in the pitcher-plant mosquito: Effects of larval growth history. Ecology 76:2055-2065. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1992. Reproductive consequences of density-dependent size variation in the pitcher-plant mosquito, Wyeomyia smithii (Diptera: Culicidae). Ann. Entomol. Soc. Amer. 85:274-281. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1992. Resource limitation, habitat segregation, and species interaction of British tree-hole mosquitoes in nature. Oecologia 90:227-237. [pdf]

Broadie, K. S., and Bradshaw, W. E. 1991. Mechanisms of interference competition in the western tree-hole mosquito, Aedes sierrensis. Ecol. Entomol. 16:145-154. [pdf]

Bradshaw, W. E., and Holzapfel, C. M., 1991. Fitness and habitat segregation of British tree-hole mosquitoes. Ecol. Entomol. 16:133-144. [pdf]

Fisher, I. J., Bradshaw, W. E., and Kammeyer, C. 1990. Fitness and its correlates assessed by and intra- and interspecific interactions among tree-hole mosquitoes. J. Anim. Ecol. 59:819-829. [pdf]

Hard, J. J., Bradshaw, W. E., and Malarkey, D. J., 1989. Resource- and density-dependent development in tree-hole mosquitoes. Oikos 54:137-144. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1988. Drought and the organization of tree-hole mosquito communities. Oecologia 74:507-514. [pdf]

Bradshaw, W. E. 1986. Variable iteroparity as a life-history tactic in the pitcher-plant mosquito Wyeomyia smithii. Evolution 40:471-478. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1986. Geography of density-dependent selection in pitcher-plant mosquitoes. Pp. 48-65 in F. Taylor and R. Karban, eds. The Evolution of Insect Life Cycles. Springer-Verlag, New York. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1986. Habitat segregation among tree-hole mosquitoes. Nat. Geogr. Res. 2:167-178. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1985. The distribution and abundance of tree-hole mosquitoes in eastern North America: Perspectives from north Florida. Pp. 3-23 in J. R. Rey, L. P. Lounibos, and J. H. Frank, eds. Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratories, Vero Beach, FL. [pdf]

Hawley, W. A. 1985. Population dynamics of Aedes sierrensis. Pp. 167-184 in J. R. Rey, L. P. Lounibos, and J. H. Frank, eds. Ecology of Mosquitoes: Proceedings of a Workshop. Florida Medical Entomology Laboratories, Vero Beach, FL. [pdf]

Hawley, W.A. 1985. A high fecundity Aedine: factors affecting egg production of the western treehole mosquito, Aedes sierrensis (Diptera: Culicidae). J. Med. Entomol. 22:220-225. [pdf]

Hawley, W.A. 1985. The effect of larval density on adult longevity of a mosquito, Aedes sierrensis: epidemiological consequences. J. Anim. Ecol. 54:955-964. [pdf]

Bradshaw, W. E., and Creelman, R. 1984. Mutualism between the carnivorous purple pitcher plant and its inhabitants. Amer. Midl. Nat. 112: 294-304. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1984. Seasonal development of tree-hole mosquitoes (Diptera: Culicidae) and chaoborids in relation to weather and predation. J. Med. Entomol. 21:366-378. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1983 Predator-mediated, non-equilibrium coexistence of tree-hole mosquitoes in southeastern North America. Oecologia (Berlin) 57: 239-256. [pdf]

Bradshaw, W. E. 1983. Interaction between the mosquito Wyeomyia smithii, the midge, Metriocnemus knabi, and their carnivorous host Sarracenia purpurea. Pp. 161-189 in J. H. Frank and L. P. Lounibos, eds. Phytotelmata: Terrestrial Plants as Hosts for Aquatic Insect Communities. Plexus Publishing, Medford, NJ. [pdf]

Island biogeography

Lems, K., and Holzapfel, C. M. 1974. Flora of the Canary Islands: the Cruciferae, the Crassulaceae, and the ferns and their allies. Ann. INIA/Ser.: Prod. Veg./N.4. 1974:165- 273. [pdf]

Holzapfel, C. M. 1972. Evolution in the Canary Islands III. Two new Arminda (Orthoptera: Catantopinae) from the Canary Islands, with notes on the Arminda bruneri complex on Tenerife. Occ. Pap. Mus. Zool. Univ. Mich. 662:1-16. [pdf]

Holzapfel, C. M., and Cantrall, I. J. 1972. Evolution in the Canary Islands V. The genus Calliphona (Orthoptera: Tettigoniidae). Occ. Pap. Mus. Zool. Univ. Mich. 663:1-22. [pdf]

Lems, K., and Holzapfel, C. M. 1971. Adaptation of growth form in Echium leucophaeum (Boraginaceae). Ecology 52:499- 506. [pdf]

Lems, K., and Holzapfel, C. M. 1971. Botanical notes on the Canary Islands VI. The Echium decaisnei complex. Bol. Inst. Nac. Invest. Agron. Madrid (1): 189-196. [pdf]

Lems, K., and Holzapfel, C. M. 1968. Evolution in the Canary Islands I. Phylogenetic relations in the genus Echium (Boraginaceae) as shown by trichome development. Bot. Gaz. 129:95-107. [pdf]

Lems, K., and Holzapfel, C. M. 1968. Evolution in the Canary Islands II. Revision of the annual and biennial species of Echium (Boraginaceae). Bull. Torrey Bot. Club 95:37-57.[pdf]

Mosquito biology

Miller, T. E., Bradshaw, W. E., and Holzapfel, C. M. 2018. Pitcher-plant communities as model systems for addressing fundamental questions in ecology and evolution. Ch. 24 in A. M. Ellison and L. Adamec, Eds. Carnivorous Plants: Physiology, Ecology, and Evolution.. Oxford University Press, Oxford. [pdf]

Hoekman, D., and 17 others. 2016. Design for mosquito abundance, diversity, and phenology sampling within the National Ecological Observatory Network. Ecosphere 7:e013520 [pdf]

Springer, Y., and 47 others. 2016. Tick-, mosquito-, and rodent-borne parasite sampling designs for the National Ecological Observatory Network. Ecosphere 7:e01271. [pdf]

Broberg, L. E., and Bradshaw, W. E. 1997. Lambornella clarki (Ciliophora: Tetrahymenidae) resistance in Aedes sierrensis: Population differentiation in a quantitative trait and allozyme loci. J. Med. Entomol. 34:38-45. [pdf]

Bradshaw, W. E., and Holzapfel, C. M. 1991. Life in a deathtrap. Natural History July:34-36. [pdf]

Kleckner, C., and Bradshaw, W. E. 1991. Giemsa stain as a marker in the pitcher-plant mosquito, Wyeomyia smithii. J. Amer. Mosq. Control Assoc. 7:654-656. [pdf]

Bradshaw, W. E. 1983. Estimating biomass of mosquito populations. Environ. Entomol. 12:779-781. [pdf]

Holzapfel, C. M., and Bradshaw, W. E. 1976. Rearing of Toxorhynchites rutilus septentrionalis (Diptera: Culicidae) from Florida and Pennsylvania with notes on their pre-diapause and pupal development. Ann. Entomol. Soc. Amer. 69:1062-1064. [pdf]