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Fig. 1. The spectrum of Jupiter (A), the 
spectrum of the sun (B), and a ratio 
of the spectrum of Jupiter to that of the 
sun (C). The ordinates are given in ar- 
bitrary units. At the base of the spectrum 
in (C) are marked the iIldividual com- 
ponents of the J-manifolds (2 ); the in- 
tensities are representational only. Fur- 
thermore, the ratio has not entirely elimi- 
nated the effect of telluric absorption, be- 
cause the telluric air mass in the solar 
spectrum is significantly less than thalt 
for Jupiter. 

(shorter wavelengths). The great 
strength of the CH3D band is there- 
fore only apparent, and it should not 
be construed that the D/H ratio is 
necessarily much greater - than on 
Ear;th. 
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none of the observed lines (as we shall 
call the unresolved manifolds) is free 
of telluric blending. Figure 1 shows 
some of the lines and a comparison 
solar spectrum. 

This spectral region is strongly afb- 
sorbed by Earth's atmosphere. Among 
the most evident absorptions are the 
center of the 1-0 CO band, the high- 
frequency wing tof the 6-3-y H20 
bsands, the P-brantcfh of the V3 N20f 
band, and the low-frequency wing of 
the 4.2-,u CO2 bands. In particular, the 
N20 and CO2 bands are so strong 
that all trace of the -CH3D Q- and 
R-branches disappears. Nevertheless, 
for all the P-branch from P2 to Pll, 
there is a jovian line absorption in a 
position appropriate to each of the 
manifolds. 

It is not possible, at the present time, 
to give either a CH3D abundance or a 
D/H ratio. The determination of the 
CH3D abundance will require a de- 
tailed experimentai and theoretical 
consideration of line-formation in the 
jovian atmosphere under conditioxls 
wherein both thermal emission and so- 
lar reRection may be important. The 
D/H ratio will, in turn, be very model- 
dependent because first the CH3D/CH4 
ratio must be determined and the 
CH4 abundance can be found only 
from examination of overtone bandzs 
at much higher frequency. Because 
of its great strFength, the nearbfy v3 
CH4 band at 3.3 ,u is virtually unob- 
servable in the jovian atmosphere 
(3). The 4- to S-,u window of the at- 
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mosphere of Earth roughly coincides 
with a window in the jovian atmo- 
sphere. The jovian window occurs in 
bhe ,interval betw,een the V4 ammolNia 

band centered near 1627 cm- t and 
the V3 methane band centered near 
3020 em- . Both of these bands are 
very strong so that the resultant win- 
dow is ;only a few hundred reciprocal 
centimeters wilde. The vl CEI3D b!and, 
fortunately, falls within this window 
but the effective depth of the jovian 
atmosphere is much greater at these 
frequencies than at higher frequencies 
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Last-stage larvae of the .nonbiting 
mosquito, Chaoborus czmericanus, over- 
winter in a state of developmental 
standstill which is provoked (1 ) and 
sustained by exposure to short-day con- 
ditions. When overwintering larvae are 
collected from the shallow ponds in 
which they often abound, the diapause 
persists if the larvae are maintained un- 
der short-day conditions at 5°C or at 
room tem.perature. By contrast, the lar- 
val diapause is terminated, and pupa- 
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tion takes place about a week after ex- 
posure to long-day conditions (2). On 
the basis of laboratory studies, the 
transition from inhibitory short days to 
stimulatory long days begins at 13 
hours of daily illumination (3). 

In my study, the photosensitivity of 
Chaoborus has been studied with special 
reference to spectral sensitivity at 
"dawn" and "dusk." Groups of 50 dia- 
pausing larvae were exposed to 12 
hours of white light plus 4 hours more 
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otherwise serves to mczintczin dfiapaase. This difference in sensitivity is probably 
dae to bleaching and implies that thv Iczrvae experience an asymmetric day. 
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titative differences between the two 
curves in that the insects' sensitivity at 
dawn is abouit an order of magnitude 
greater tI;an at dusk. At the most eSec- 
tive wavelength of 540 nm the sensi- 
tivity of the larvac, b-oth at dawn and at 
dusk, exceeded the limits of the photo- 
cells (5 X I 0- t4 einstein cm- 2 sec -1 ) e 

This Iatter value approximates the ex- 
perimenttally determined "dusk" sensi- 
tivity at 540 nm in that it provoked 
53 percent development. Qualitatively 
simiIar, but quantiitatively different ac- 
tion spectra were obtained when the 
data were computed for "threshold re- 
sponse" and "saturating reslponse.' At 
each waveIength the threshold responses 
required flux densities about an order 
of magnitude Iess, and saturating re- 
sponses about an order of magnitude 
greater, than the SO percent responlse. 

Chaoborus larvac are remarkably 
transparent, the only obvious pigment 
being in the eyes and swim-bladders. 
The cuticle, for example, is completely 
devoid of any pigment that might exert 
a filtering action on incident white light. 
Consequently the action spectra (Fig. 
1) suggest that light recetption is by a 

red pigment with a strong absorption 
maximum at 540 nm. This value is sub- 
stantiaIIy higher than that reported for 
most other insects where maximum 
sensitivity is in the blue, with a virtual 
cutoff at about S00 nm (6 7). A no- 
table exception is the pink bollworm 
(Pectinophora gossypiell) in which 
blue (480 nm) and red (640 nm) are 
equally eSective in provoking or avert- 
ing the onset of larval- diapauseX Red 
light wasS by contrast completely inef- 
fective in synchronizing the oviposition, 
hatching5 anld adult ecdysis of this moth 
(8). 

A compariszn of slpectra at dawn and 
at dusk has apparently not been reported 
for any other animal. The most perti- 
nent previous study is that carried out 
by Lees on the aphid Megollra viciae 
(6 9). Lees presents an action spec- 
trum of effective wavelengths introdalced 
ll/2 hoalrs after the lights were turned 
off. Sensitivity extended throughout the 
blue and blue-green with a pronounced 
maximum from AS0 to 470 nm. Lees 
reports preliminary findings of experi- 
menits in which the night was inter- 
rupted shortly before dawn. The wave- 
length of maximum eSectiveness con- 
tinued to be in the blue at 470 nmS but 
the action spectrum included somewhat 
higher wavelengths. Consequently? it 
would appear that the aphid makes use 
of a different photosensitive pigment 
from that used by ChaoZ70ras. 

The foregoing data constitute a novel 
finding- namely, a tenfold greater pho- 
tosensitivity at dawn than at dusk. Since 
these mosquBito larvae apparently make 
use ol the same pigment for the rece?- 
tion of light at dawn and at dusk the 
change in sensitivity can be most simply 
accountedl for by the assumption that 
the pigment is subject to partiaI bleach- 
ing during prolonged exposure to light. 
Under that circumstance, dawn would 
find the receptor mechanism in the dark- 
adapted state, whereas the higher thresh 
olds at dusk would be directly attrib- 
utabIe to a less efficient absorption of 
light by the partially bleached pigment 
of the Iight-adapted mechanism. The net 
eSect is that a;;dlay" to these larvae is 
asymmetric in that it begins substantially 
before sunrise but terminates so-on alfter 
sunset. 
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Fig. 1. Action spectra for photoperiodical- 
ly provoked termination of diapause. The 
curves represent the flux density of quanta 
necessary to eliclt 50 percent development 
when provided in 4-hour pulses either im- 
mediately preceding (dawn) or immediate- 
ly after (dusk? -a l2-hour white-light pho- 
tophase. 

of near-monochromatic Iight (4) of 
controlIed intensity (5), provided either 
immediately before or after the whit - 
Iight short-day regimen. Each wave- 
length was tested at a series of flux den- 
sitLes. After S or 7 days of treatment at 
23° + 1.5°C, all individuals were re- 
turned to the white-light short-day reg- 
imen (LD, 12: 12) and starved at 
23° + l.5°C in the absence of food. 
Five days thereafter, the termination of 
diapause was scored in terms of the ini- 
tiation of pupal development, as signaled 
by the appearance of the pupal breath- 
ing horns. All experiments were per- 
formed in parallel with long- and short- 
day controls which received only white 
light ( 16 or 12 hours, respectively). 
During the several months required for 
the experiments here reported, 44 to 
91 percent of the long-day controls 
showed development; the corresponding 
data for the short-day controls ranged 
from O to 8 percent. The percentage of 
development was calculated relative to 
these controls. A dose-response curve 
was ordinarily plotted for each wave- 
length and the 50 percent intercept was 
read directly from it. 

The action spectra for the 50 percent 
developmental response are shown in 
Fig. 1. The spectra at dawn and at dusk 
appear to be qualitatively similar, the 
most eSective wavelength being yellow- 
green light at 540 nm. However at all 
wavelengths there are-impressive quan- 
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