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Abstract

Many traits are assumed to have a causal (necessary) relationship with one another

because of their common covariation with a physiological, ecological or geographical

factor. Herein, we demonstrate a straightforward test for inferring causality using

residuals from regression of the traits with the common factor. We illustrate this test

using the covariation with latitude of a proxy for the circadian clock and a proxy for the

photoperiodic timer in Drosophila and salmon. A negative result of this test means that

further discussion of the adaptive significance of a causal connection between the

covarying traits is unwarranted. A positive result of this test provides a point of

departure that can then be used as a platform from which to determine experimentally

the underlying functional connections and only then to discuss their adaptive

significance.
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With the advent of modern molecular techniques,

increasing attention is being paid to nonmodel organ-

isms for investigating the genetic basis of various phe-

notypes in physiological, ecological or geographical

contexts. As genes are discovered that covary with an

environmental parameter such as temperature, light or

latitude, there is a natural temptation to ascribe causal-

ity to these correlations. However, correlations are only

the tantalizing starting points for robust experimental

designs and, in themselves provide evidence for neither

causality nor an underlying functional mechanism.

Herein, we use covariation of traits with latitude to

illustrate the problem of confounding causation and

correlation over geographic gradients. We begin with a

simple diagram:
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If A is correlated with C and B is correlated with C,

then A will automatically be correlated with B. There

follows the natural temptation to infer or conclude that

A causes B, that is genetic variation in A constitutes the

genetic basis of B. As an example, we consider the rela-

tionship between the circadian clock regulating daily

activities of organisms and the photoperiodic timer reg-

ulating seasonal activities of organisms. This relation-

ship has a long and contentious history (Tauber &

Kyriacou 2001; Hazlerigg & Loudon 2008; Bradshaw &

Holzapfel 2010; Saunders 2010; Koštál 2011), a legacy of

Bünning’s (1936) proposition that the circadian clock

formed the causal basis of photoperiodism. At the

molecular level, a probabilistic cause between circadian

rhythmicity and photoperiodism occurs in plants (Ko-

bayashi & Weigel 2007; Wilczek et al. 2009) and in a

long-established laboratory strain of Syrian hamsters

(Shimomura et al. 1997; Lowrey et al. 2000). However,

there are no examples where the circadian clock has

been shown to be necessary, let alone sufficient for reg-

ulating photoperiodic response in natural populations

of any animal. Yet, elements of the circadian clock have

been shown to vary with latitude as have phenotypes

of the photoperiodic timing mechanism (Fig. 1).

Therein lies the problem: Covariation is not proof of

causation.
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Fig. 1 Inference of causality between circadian rhythmicity

and photoperiodism due to their common covariation with the

independent variable, latitude. If allelic variation in a circadian

gene is correlated with latitude and a proxy for the photoperi-

odic timer is correlated with latitude, the incorrect conclusion

could be drawn that the circadian clock forms the causal basis

of the photoperiodic timer, that is that the circadian clock is

necessary for or forms the mechanistic basis of photoperiodic

time measurement. In fact, the circadian clock, the photoperi-

odic timer, and an endless array of other variables are corre-

lated with latitude but are not necessarily causally connected.
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The seasonal timing of life-history events, which is

typically orchestrated by the photoperiodic timer, is cor-

related with latitude in both plants (Wilczek et al. 2009)

and animals (Bradshaw & Holzapfel 2007). An increas-

ing number of circadian-related genes are now known

to vary with latitude in Neurospora (Michael et al. 2007),

plants (Arabidopsis: Michael et al. 2003; Caicedo et al.

2004; Stinchcombe et al. 2004; Glycine: Zhang et al. 2008),

Drosophila (Kyriacou et al. 2008; Rand et al. 2010), fish

(O’Malley & Banks 2008, O’Malley et al. 2010), birds

(Johnsen et al. 2007), and humans (Cruciani et al. 2008).

Given the observation that both circadian genes and

photoperiodically mediated seasonal traits vary with

latitude, the tendency is to conclude a causal connection

between the circadian clock and the photoperiodic timer

based on their latitudinal covariation.

The covariation of two traits with latitude could

indeed be due to a common causal mechanism (pleiot-

ropy), in which case an interesting relationship has

been established and the question then becomes resolv-

ing the mechanistic basis of their coevolution. However,

while latitude usually and appropriately serves as a

composite variable, latitudinal variation represents mul-

tiple environmental factors, any one or a combination

of which could be exerting parallel selective forces. The

covariation of two traits with latitude could be a result

of different selective forces acting on the two traits, the

same selective force acting on two genetically indepen-

dent traits, or a single selective force acting on one trait

accompanied by genetic hitchhiking of a closely linked

trait (Li 1997, ch. 9; Schluter et al. 2004, 2010). Examina-

tion of the relationship between variables can be made

using techniques described in Sokal and Rohlf (1995,

ch. 16): partial correlation examines the relationship

between two variables, while all the other correlated

variables are held constant; path analysis incorporates

simultaneously the contribution of several correlated
variables. While useful, these statistics are complex,

may suffer from collinearity of the independent vari-

ables (Petraitis et al. 1996), are not readily accessible in

many statistical packages and heretofore have not incor-

porated discrete variables. We are proposing a more

transparent test that requires little more than a hand

calculator or an Excel spreadsheet and incorporates

both linear regression and analysis of variance. Below,

we provide examples from flies and fish to illustrate the

simplicity and usefulness of the analysis of residuals to

avoid a spurious conclusion of causation when only

correlation exists. When Y is regressed on X, the regres-

sion equation, Ŷ ¼ aþ bX plots the regression line and

Yi � Ŷ = deviations from regression (residuals). The

residuals are zero correlated with X, that is the effect of

X on Y has been factored out. If A is a causal element

of B and both are correlated with latitude, then even

when the common element of latitude is factored out

the residuals should still be correlated; if not, their com-

mon correlation with latitude is due to linkage or inde-

pendent evolution and not due to a basic underlying

causal relationship between A and B. When A or B is a

discrete and not a continuous variable, the residuals are

computed as deviations from mean latitude for each

category of Y. Although applicable to the covariation or

association of any two traits or processes with any envi-

ronmental parameter, we continue with examples from

the biological timing literature. To illustrate the test, we

have chosen two specific examples because of their con-

nection with latitude, because of the large number of

sample populations over a wide latitudinal range, and

because the numerical data were available in the source

papers. This sort of analysis was not possible for most

of the papers we read because either the sample size

was too small or the tabular, numerical data from

which figures were generated were not available either

in the body of the text or in supplemental online mate-

rial. The advent of requiring the posting of such data

(Fairbairn 2011) will make subsequent verification via

independent analysis tractable.

First, in Drosophila littoralis, Lankinen (1986) found

significant correlations between latitude and a proxy for

the photoperiodic timer (critical photoperiod necessary

to induce adult diapause) and between latitude and the

two most fundamental properties of any circadian

rhythm (the period and amplitude of its oscillation)

(Fig. 2). Insightfully, he factored out the common effect

of latitude and showed that the residuals of critical

photoperiod were no longer correlated with the residu-

als of either period or amplitude of the circadian eclo-

sion rhythm. Hence, he proposed that their covariation

with latitude was due to linkage and not a causal

relationship between them. To verify this conclusion,

Lankinen and Forsman (2006) crossed two extreme
� 2011 Blackwell Publishing Ltd
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Fig. 2 Use of residuals to test for a cau-

sal relationship between circadian

rhythmicity and photoperiodism in Dro-

sophila littoralis. (Top) Latitudinal covari-

ation in photoperiodic response (critical

photoperiod) and two fundamental

properties of the circadian clock, period

and amplitude of the oscillation; (Bot-

tom) lack of correlation between devia-

tions from regression of critical

photoperiod, period and amplitude on

latitude. Any significant relationship

between photoperiodic response and

properties of the circadian clock is elim-

inated when the common element of lat-

itude is factored out (plotted from Table

2 in Lankinen 1986). Details of analyses

are provided in Appendix S1.
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Fig. 3 Verification of analysis of residuals as a test for a causal

relationship between photoperiodism and circadian rhythmic-

ity in D. littoralis by response to selection on critical photope-

riod and period (s) of the circadian oscillation in D. littoralis. A

northern and a southern population were hybridized, main-

tained for eight generations on constant light (L:L) to allow

free recombination, selected for nondiapause under short days

(L:D = 12:12) for 30 generations, maintained in L:L for 10 gen-

erations, and the descendents of a full-sib pair maintained in

L:L for a further six generations (plotted from data in Lankinen

and Forsman 2006).
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populations, allowed free recombination and then

imposed selection for nondiapause on short days. The

hybrid lines exhibited a more ‘southern’ photoperiodic

response and a more ‘northern’, circadian-based eclo-
� 2011 Blackwell Publishing Ltd
sion rhythm than found in any of Lankinen’s original

geographic strains (Fig. 3), that is the reverse of what

would have been expected had the circadian clock been

a causal component of photoperiodism. These experi-

ments confirmed Lankinen’s earlier conclusion (1986)

that when the common effect of latitude was factored out,

critical photoperiod was not correlated with either fundamen-

tal property of circadian rhythmicity. More generally,

Lankinen and Forsman’s (2006) experiments confirmed

the robustness of testing for a potentially causal connec-

tion between two traits by using residuals to factor out

their common, correlated element.

Second, in Chinook salmon, Oncorhynchus tshawyts-

cha, O’Malley and Banks (2008) found a significant cor-

relation between latitude and their proxy for the

circadian clock (length of the polyglutamine repeat in

the gene OtsClock1b, hereafter, Poly Q) (Fig. 4a). They

also found a significant association between latitude

and their proxy for the photoperiodic timer (run

time = seasonal timing of upstream migration in fresh-

water) (Fig. 4b). O’Malley and Banks (2008, p. 2813)

conclude with the suggestion ‘that length polymor-

phisms in OtsClock1b may be maintained by selection

and reflect an adaptation to ecological factors correlated

with latitude, such as the seasonally changing day

length.’ After extending their correlative analyses to

three more species of salmon (Onchorhynchus), O’Malley

et al. (2010, p. 3705) state more boldly that the ‘Clock

gene is a central component of an endogenous circa-

dian clock that senses changes in photoperiod (day
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length) and mediates seasonal behaviours’. At the heart

of the conclusion is the association between latitude,

Poly Q and the timing of migration and spawning. This

conclusion makes at least three essential, but untested

assumptions.

First, the conclusion requires that a single genotype

(high frequency of the 335 allele and concomitant low

frequency of the 359 allele) of the Chinook Poly Q

domain is the primary determinant of two different run

times, spring and autumn (Fig. 4b), even in the same

river. This assumption may or may not be true.

Second, the conclusion assumes that the salmon-

specific OtsClock1b plays a functional role in salmon

circadian rhythmicity. There are two Clock paralogs in

salmon: OtsClock1a and OtsClock1b, only the latter of

which shows a significant correlation with latitude.

However, the assumption that OtsClock1b has the

same functional role in salmon as its ortholog in the

mammalian circadian clock (Baggs et al. 2009) is

untested.

Third, the conclusion assumes that there is a causal

relationship between the daily circadian clock and the

seasonal photoperiodic timer. This assumption is at best

contentious (Bradshaw & Holzapfel 2010; Saunders

2010; Koštál 2011) and has not been tested in any fish.

There is then a great leap from observing a correlation

between latitude and only the OtsClock1b paralog and a

correlation between latitude and run time or spawning

date to concluding that the circadian clock is responsi-

ble for the evolution of photoperiodism and, hence, sea-

sonal timing (O’Malley et al. 2010).

Strictly for purposes of illustration, we assume the

first two of the above three assumptions to be true. We

then use Lankinen’s (1986) approach of analysing resid-

uals to test for an association between Poly Q and run

time by factoring out the effect of latitude on Poly Q.

In this case, Poly Q is a continuous variable and run
time is a discrete variable. We therefore calculated the

residuals from regression of Poly Q on latitude

(Fig. 4a) and performed one-way ANOVA of the residu-

als using run time as treatments. After factoring out the

effect of latitude, run time accounted for a nonsignifi-

cant 7% of the residual variation in Poly Q (Fig. 4c).

We therefore conclude that there is no basis to infer or

suggest a causal relationship between them, either as a

direct, independent effect of Poly Q on run time or as

an indirect effect of Poly Q on the circadian clock. Fur-

ther discussion of the adaptive significance of Poly Q in

relation to run time is unwarranted, as is any specula-

tion about a potential connection between the circadian

clock and the seasonal photoperiodic timer. Future

research might well be directed towards determining

the function and adaptive significance of Clock1b in sal-

mon in the context of the circadian clock itself, much as

have other studies in diverse organisms (Yerushalmi &

Green 2009).

Hence, we propose that before inferring a causal rela-

tionship in similar cases of covariation of two or more

traits with a third physiological or ecological indepen-

dent variable, that a straightforward analysis of devia-

tions from the common independent variable be used.

Absent a significant association, no causal relationship

should be inferred or suggested. Even an inference of a

causal relationship would be reasonable only if all of

the following were true: (i) Variation in each trait is sig-

nificantly correlated with a third common element, in

our case, with latitude. (ii) The significant correlation

between the two traits persists after the effect of the

common element is factored out. (iii) The environmen-

tal conditions used to show the correlations in (a) and

(b) were in the same organism and determined under

the same conditions.

Note that our test accommodates the situation where

both the trait and the gene are associated with latitude
� 2011 Blackwell Publishing Ltd
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in the same way. In that case, their latitudinal covaria-

tion is due to an environmental factor(s) selecting con-

comitantly on both the gene and the trait; no correlation

between them should persist once the latitude-depen-

dent causal environmental factor(s) is accounted for. If

the relationship between the gene and the trait is due to

an underlying causal connection, then a significant cor-

relation between them should persist independently of

latitude.

Significant, positive results from analysis of residuals

serve as a point of departure for future experiments

but, in of themselves, do not substitute for an under-

standing of the functional connection between genotype

and phenotype (Kingsolver & Schemske 1991; Petraitis

et al. 1996; Dalziel et al. 2009; Blackman 2010; Storz &

Wheat 2010). Successful connections between molecular

variation and functional phenotypes have been estab-

lished (but only after additional study) in both model

organisms such as Drosophila (Schmidt et al. 2008; McK-

echnie et al. 2010; Paaby et al. 2010) or Arapbidopsis (Wil-

czek et al. 2009) and in natural populations of

nonmodel organisms such as the house mosquito, Culex

pipiens (Labbé et al. 2009), lizards (Rosenblum et al.

2010), and organisms cited by Storz and Wheat (2010)

and Dalziel et al. (2009), their Appendix S1, Supporting

information), including killifish, butterflies, garter

snakes, deer mice, oldfield mice, three-spined stickle-

back, and Darwin’s finches.

With the advent of tractable molecular approaches in

an increasing number of nonmodel organisms with

interesting physiological or ecological backgrounds,

there will be increasing impetus to ascribe an adaptive

significance to molecular genetic variation. Because

postglacial climate change has established many eco-cli-

matic selection gradients across latitudes in nature, any

correlation between molecular variation in SNPs, non-

synonymous substitutions or transcriptional profiles

with latitude provides a tempting avenue for conclud-

ing an adaptive significance for the observed genetic

variation. Instead of proposing untested suggestions or

implications because of their inherent plausibility,

investigators should first examine residuals as described

herein. If nonsignificant, further discussion or specula-

tion of the potential adaptive significance of their

covariation is not warranted. If significant, then an

inferred causal connection can be used as a platform

from which to seek a functional connection between

genotype, phenotype and, ultimately, fitness.
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