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ABSTRACT
We selected on divergent photoperiodic response in three separate lines from a natural population of

the pitcher-plant mosquito, Wyeomyia smithii. Line crosses reveal that there exists within a population,
diverse epistatic variation for a fitness trait that could contribute to adaptive potential following founder
events or rapid climate change.

Afundamental tenet of evolutionary genetics is that epistasis (additive � additive, additive � dominance, dom-
inance � dominance) was unique to each cross. Thea trait’s ability to respond to selection is directly

related to the additive genetic variation (or evolvability, latter observation was important because it implied sto-
chastic reordering of genic interactions as would besensu Houle 1992) of that trait. In the absence of nonad-

ditive genetic variation, response to stabilizing or direc- expected as a consequence of random drift following
independent founder events. The two assumptions weretional selection or isolation and drift following a founder

event should result in reduced additive genetic variation that postglacial dispersal had taken place by sequential
founder events along a latitudinal gradient and that therein the population. However, in the presence of nonaddi-

tive genetic variation, selection or isolation and drift can is actually epistatic variation for photoperiodic response
within populations. The first of these assumptions wasresult in increased additive genetic variation, facilitating

the evolution of populations having experienced a ge- supported by Armbruster et al. (1998) who showed that
average heterozygosity at 10 allozyme loci decreasednetic bottleneck or confronting environmental change

(Mayr 1954; Templeton 1980, 1996; Goodnight 1988, with latitude from the approximate southern limit of the
Laurentide Ice Sheet (�40� N in New Jersey) northward.2000; Carson 1990; Cheverud and Routman 1996;

Slatkin 1996; Meffert 1999, 2000; Cheverud 2000; The second of these assumptions is the topic of the
present article.Naciri-Graven and Goudet 2003).

This generation of additive from epistatic variation has Hybridization experiments have revealed genetic dif-
ferences attributable to epistasis among species (Doe-been invoked to explain the increase in additive genetic

variation for photoperiodic response among populations bley et al. 1995) and among populations within species
(Hard et al. 1993; Lair et al. 1997; Fenster and Gallo-of the pitcher-plant mosquito, Wyeomyia smithii, dispers-

ing along a latitudinal gradient into postglacial north- way 2000; Galloway and Fenster 2000; Carroll et al.
2001, 2003). In theory, one might expect little epistaticern North America (Hard et al. 1992, 1993). Hard et
variation within populations as selection should favoral.’s argument was based on three observations and two
an optimal combination of alleles (Whitlock et al. 1995),fundamental assumptions. The observations were, first,
but crosses between selected lines within populationsthat contrary to the expectations of directional selection
reveal that such epistatic variation can exist (Matheron a latitudinal scale and stabilizing selection on a local
and Jinks 1982; Cheverud 2000). We use the latterscale, the additive genetic variance for photoperiodic
approach to ask whether lines of W. smithii, selected forresponse increased with latitude. Second, genetic differ-
divergent photoperiodic response, differ in epistasis. W.ences in photoperiodic response between southern and
smithii enters a larval dormancy that is initiated, main-northern populations involved differences in epistasis.
tained, and terminated by photoperiod (day length;Third, the contribution of different forms of digenic
Bradshaw and Lounibos 1977). The critical photope-
riod is the length of day at which an individual switches
between active development and dormancy and, in di-1Corresponding author: CEEB, 5289 University of Oregon, Eugene,

OR 97403-5289. E-mail: wyomya@aol.com rect response to seasonal selection, increases with lati-
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TABLE 1

Results of the joint-scaling test based on generation means
and variances between lines of W. smithii selected

for long and short critical photoperiods

Joint-scaling test a

A AD ADM ADME
Subpopulation 4 d.f. 3 d.f. 4 d.f. 1 d.f.

Streamside
� 2 99.29 70.47 80.55 10.54 b

P �0.001 �0.001 �0.001 �0.001
Backwater

� 2 252.90 95.11 91.04 1.49
P �0.001 �0.001 �0.001 �0.122

Sandy bog
� 2 298.66 58.21 86.25 0.04
P �0.001 �0.001 �0.001 0.844

Each subpopulation was transported to the lab, reared
through three lab generations to minimize field effects, diver-
gently selected for critical photoperiod for 13 generations
with cumulative inbreeding �5% (Bradshaw et al. 2003),
reared through 9 subsequent generations with N � 1000 to
permit recombination, and then crossed to test for epistatic
differences between lines within subpopulations. The two par-
ent populations were hybridized to produce 14 “generations”:
the two parents, F1, F2, both backcrosses, and all of their possi-
ble reciprocals. The experimental generations were reared on
short days to induce dormancy and to synchronize develop-
ment. Day lengths were then increased by 3 min·day�1, ulti-
mately inducing development and pupation in each individ-
ual. The day length on the day of pupation was then scored
as the critical photoperiod of the pupating individual. Since
development under these conditions was log-normally distrib-
uted, individual critical photoperiods were log10 transformed
prior to analyses. The number of parents of the experimental
larvae averaged 85 females and 115 males; the number of
experimental larvae per “generation” averaged 206.

a The joint-scaling test (Lair et al. 1997) tests sequentially
for goodness of fit to successively more inclusive models: A,
additive; AD, additive-dominance; ADM, additive-dominance-
maternal (including both additive-maternal and dominance-
maternal effects); ADME, additive-dominance-maternal-digenic
epistasis models. Mather and Jinks’ (1982) F-∞ parameteriza-
tion was used to calculate expected generation means. A high
value of �2 and a significant P-value indicate inadequacy (poor
goodness of fit) of the model and that more inclusive genetic
effects need to be considered. Note that in the presence of

Figure 1.—Critical photoperiod of long and short selectedsubstantial epistasis, estimates of additive and dominance ef-
lines and their F1 and F2 hybrids and backcrosses (B1, B2). Thefects are difficult to interpret (Hayman 1958, 1960). A copy
plots show mean log10(critical photoperiod, hr � 2SE). Theof our joint-scaling test written in Mathcad 4.0 is available on
solid line shows the weighted least-squares expectation of anrequest.
additive model. The results of the joint-scaling test (see alsob Heterogeneity chi square (Zar 1996: �2 � 11.95, d.f. � 2,
Table 1) are shown for the additive-dominance-maternalP � 0.003) indicates significant differences among subpopula-
(ADM) and the ADME models; ***P � 0.001; NSP � 0.05. Thetions in rejection of the ADME model.
symbols in the boxes refer to the sign of digenic epistasis (	,
significant and positive; �, significant and negative; 0, not
significant) in the order A � A, A � D, D � D from the
coefficients in Table 2.

tude and altitude of population origin (Bradshaw and
Lounibos 1977; Bradshaw et al. 2003). The range of
W. smithii extends from the Gulf of Mexico to northern “PB” of earlier studies from this lab). To increase inde-
Canada. We collected mosquitoes from a mid-latitude pendence of the replicate lines, we collected from three
locality along a stream meandering through a cedar subpopulations within a 200-m radius of each other

(Bradshaw et al. 2003): “streamside” from along theswamp in the New Jersey Pine Barrens (40� N, locality
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TABLE 2 lected lines had been maintained for nine potentially
recombining generations without selection prior to test-Components of digenic epistasis contributing to genetic
ing for epistasis, higher-order epistasis was more likelydifferences among subpopulations of W. smithii
than linkage to be responsible for rejection of the addi-selected for long and short

critical photoperiods tive-dominance-maternal-digenic epistasis (ADME) model
in this cross. In addition, the pattern of coefficients of

Digenic epistatic effects a digenic epistasis was distinct for each subpopulation
(Figure 1; Table 2). First, the contribution of additive-Subpopulation A � A A � D D � D
by-additive epistasis was negative in the sandy bog sub-

Streamside population and positive in the other two. Second, the
Coefficients 0.00733A 0.253MN �0.0254X

contribution of additive by dominance epistasis was less
t-test b 1.71NS 7.90*** 4.08*** in the sandy bog than in the backwater subpopulation.Backwater

Third, the contribution of dominance-by-dominanceCoefficients 0.0163A 0.0289M �0.0609Y

epistasis differed among all three subpopulations andt-test 3.43*** 6.68*** 8.61***
was positive in the sandy bog but negative in the otherSandy bog

Coefficients �0.0187B 0.0158N 0.0431Z two subpopulations.
t-test 3.09*** 4.24*** 5.54*** These distinct genetic fingerprints indicate that either

population subdivision is occurring over a very fine mi-a Coefficients for the components of digenic epistasis: A �
croscale (e.g., Fenster and Galloway 2000) or uniqueA, additive by additive; A � D, additive by dominance; D �

D, dominance by dominance; within each column, coefficients genetic trajectories underlie similar phenotypic trajecto-
followed by the same letter do not differ by Wald �2 (Fox et ries in response to a uniform selection gradient (e.g.,
al. 2004); significant differences: M vs. N, P � 0.05; A vs. B Travisano and Lenski 1996), or a combination of theseand X vs. Y vs. Z, P � 0.001.

processes. Regardless of which of these processes is op-b t-test for significant effect of the components of digenic
erating in W. smithii, our results show that diverse ge-epistasis: NSP � 0.089, ***P � 0.001.
netic trajectories of genic interactions are available to
respond to short-term selection within a natural popula-
tion of W. smithii. This availability may have contributedstream itself; “backwater” from a backwater of the stream

�100 m north of the first collection site; and “sandy not only to the generation of additive genetic variation
over millennial time scales since the recession of thebog” from a sandy bog �300 m to the west of the stream

and separated from it by dry pine woodlands. We im- Laurentide Ice Sheet, but also to the rapid genetic re-
sponse of W. smithii to recent climate change (Brad-posed divergent selection for long and short critical

photoperiods and then crossed the selected lines from shaw and Holzapfel 2001).
within each subpopulation (Table 1). We tested the We are grateful to P. Zani for useful discussion, Thomas Hansen
specific prediction that, if there were genetic variation and Tadeusz Kawecki for helpful comments on earlier versions of the

manuscript, Charles Fox and Derek Roff for statistical advice, andat epistatically acting loci in the original population,
the National Science Foundation for support through grants DEB-then genetic differences in photoperiodic response be-
9806278 and IBN-9814438.tween selected lines derived from the same starting sub-

population should include epistasis.
Response to selection on critical photoperiod consis-
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